BME 562 Control and Communication in the Nervous System

Course Catalog

3 Credit hours (3 h lectures). An introduction to the structural and functional elements common to nervous systems with emphasis on cellular dynamics, interneuronal communication, sensory and effector system.

Text Book(s)

<table>
<thead>
<tr>
<th>Title</th>
<th>Principles of Neural Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kandel, E.R., Schwartz, J.H., Jessell, T.M.</td>
</tr>
<tr>
<td>Publisher</td>
<td>McGraw-Hill</td>
</tr>
<tr>
<td>Year</td>
<td>2000</td>
</tr>
</tbody>
</table>

References

Books

Journals

- The Journal of Neuroscience
- European Journal of Neuroscience
- Annual Reviews of Neuroscience
- Journal of Neurophysiology

Internet links

- http://www.bmecentral.com/publications/
- http://www.sciencedirect.com
- http://www.elsevier.com
- http://www.springer.com
<table>
<thead>
<tr>
<th>Prerequisites by topic</th>
<th>Statistics for Biomedical Engineers, Physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites by course</td>
<td>BME 302, MED 236A</td>
</tr>
<tr>
<td>Co-requisites by course</td>
<td>N/A</td>
</tr>
<tr>
<td>Prerequisite for</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives and Outcomes¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
</tr>
<tr>
<td>1. Appreciate the role of control and communication in the nervous system in Biomedical Engineering [f,h,i,j]</td>
</tr>
<tr>
<td>2. Study the relationship between brain and behavior [a,e,g]</td>
</tr>
<tr>
<td>3. Study the classes, structure, and organization of nerve cells [a,c,e,i,g,j,k]</td>
</tr>
<tr>
<td>4. Analyze the origin of signals and signaling capability in the nervous system [a,e,g,i,k]</td>
</tr>
<tr>
<td>5. Study local signaling in the nervous system [a,c,e,g,i,k]</td>
</tr>
<tr>
<td>6. Study propagated signaling and interneuronal / neuromuscular synaptic transmission [a,c,e,g,i,k]</td>
</tr>
<tr>
<td>7. Correlate the coding of sensory information to stimulus energy, modality, and</td>
</tr>
</tbody>
</table>

¹ Lower-case letters in brackets refer to the Program outcomes
<table>
<thead>
<tr>
<th>Spatial & Temporal Distribution</th>
<th>Analyze the spatial distribution of sensory neurons, stimulus amplitude and intensity of sensation, as well as the adaptation rate and duration of stimulation [a,e,g,k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Apply neuro-communication principles to the construction and perception of visual images [a,e]</td>
<td>8.1 Explain the mechanism of visual image construction, visual perception, processing of motion, depth, form, and color, as well as visual attention, conscious awareness, and visual processing. [a,e,g,i,k] 8.2 Discuss the operation of the eye’s receptor sheet, phototransduction, receptor adaptation to changes in light intensity, and retinal output and signal relay [a,e]</td>
</tr>
<tr>
<td>9. Encourage life long learning, foster teamwork and enhance students’ communication skills [d,g,h,i,k]</td>
<td>9.1 Write technical report and give oral presentation on team work projects [g,h,i,k]</td>
</tr>
<tr>
<td>Week</td>
<td>Topics</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 1-2 | - Relationship between brain and behavior.
- Distinct functional regions of the brain.
- Localization of cognitive functions.
- Representation of mental processes. | Chapter 1 |
| 3 | - Classes of cells within the nervous system.
- Signaling networks and their organization.
- Conveying unique information. | Chapter 2 |
| 4-5 | - Ion channels and signaling
- Characteristics and structure of ion channels.
- Origin and determination of membrane potential.
- Balance of ion fluxes.
- Contribution of different ions.
- Electrical equivalent circuit. | Chapter 6-7 |
| 6 | - Local signaling: Passive electrical properties of neurons.
- Membrane input resistance.
- Membrane capacitance.
- Efficiency of signal conduction, and velocity of propagation. | Chapter 8 |
| 7 | - Propagated signaling
- The action potential.
- Properties of voltage-gated channels and signaling capabilities.
- Signaling function and molecular structure. | Chapter 9 |
| 8-9 | - Synaptic Transmission.
- Chemical vs. electrical synapses.
- Signaling time and signal amplification.
- Transmitter release.
- Quantal units.
- Synaptic vesicles and mechanisms regulating their production and release. | Chapter 10, 14 |
| 10-11| - Signaling at the neuron – muscle synapse
- Neuromuscular junction and end plate potentials.
- Patch clamp and single channel currents.
- ACh gated channels.
- Synaptic integration.
- Glutamate, GABA, and Glycine mediated channels.
- Integration of excitatory and inhibitory signals.
- Grouping of synapses according to function. | Chapter 11, 12 |
| 12-13| - Coding of sensory information.
- Correlating stimulus with sensation.
- Stimulus energy and sensory modality.
- Spatial distribution of sensory neurons.
- Stimulus amplitude and intensity of sensation.
- Adaptation rate and duration of stimulation. | Chapter 21 |
| 14-16| - Construction of visual images.
- Visual perception.
- Processing of motion, depth, form, and color.
- Visual attention and conscious awareness.
- Visual Processing.
- Eye’s receptor sheet.
- Phototransduction.
- Receptor adaptation to changes in light intensity.
- Retinal output and signal relay. | Chapter 25, 26 |
| | First Exam 11th Nov. 2006 | |
| 12-13| - Coding of sensory information.
- Correlating stimulus with sensation.
- Stimulus energy and sensory modality.
- Spatial distribution of sensory neurons.
- Stimulus amplitude and intensity of sensation.
- Adaptation rate and duration of stimulation. | Chapter 21 |
| 14-16| - Construction of visual images.
- Visual perception.
- Processing of motion, depth, form, and color.
- Visual attention and conscious awareness.
- Visual Processing.
- Eye’s receptor sheet.
- Phototransduction.
- Receptor adaptation to changes in light intensity.
- Retinal output and signal relay. | Chapter 25, 26 |
| | Second Exam 7th Dec. 2006 | |
| | Final Exam | |
Evaluation

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Expected Due Date</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation and project</td>
<td>End of the Semester</td>
<td>10%</td>
</tr>
<tr>
<td>First Exam</td>
<td>According to the Department schedule</td>
<td>25%</td>
</tr>
<tr>
<td>Second Exam</td>
<td>According to the Department schedule</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>According to the University final examination schedule</td>
<td>40%</td>
</tr>
</tbody>
</table>

Teaching & Learning Methods

- Active learning, where students should be active and involved in the learning process inside the classroom, will be emphasized in the delivery of this course.
- Different active learning methods/approaches such as: Engaged Learning, Project-Based Learning, Cooperative Learning, Problem-based Learning, Structured Problem-solving, will be used.
- The teaching method that will be used in this course will be composed of a series of mini lectures interrupted with frequent discussions and brainstorming exercises. PowerPoint presentations will be prepared for the course materials.
- A typical lecture would start with a short review (~5 minutes) using both PowerPoint presentations and the blackboard. This review will also depend on discussions which will gauge the students’ digestion of the previous material. Then, the students would have a lecture on new materials using PowerPoint presentations and blackboard. The lecture presentation will be paused every 15 – 20 minutes with brainstorming questions and discussions that will allow the students to reflect and think in more depth about what they learned in that presentation. Then, some example problems will be presented and discussed with the students to illustrate the appropriate problem solving skills that the students should learn. The lecture will be continued for another 15 – 20 minutes, followed by examples and/or a quiz covering the materials taught in the previous two weeks.

Policy

Attendance

Attendance will be checked at the beginning of each class. University regulations will be strictly followed for students exceeding the maximum number of absences. In addition, 0.5 point will be deducted from the grade of homework for each unexcused absence.

Term Project

Term projects will be conducted by a group of 2-3 students. The team should share and distribute responsibility. The group will submit a professional report and make an oral presentation. Making use of all resources, e.g., patents, journal publications, internet, labs, etc., is encouraged. The report must be typed. Hand-written reports are not accepted. The report should not exceed 10 pages. Late Reports will be penalized.

Student Conduct

It is the responsibility of each student to adhere to the principles of academic integrity. Academic integrity means that a student is honest with him/herself, fellow students, instructors, and the University in matters concerning his or her educational endeavors. Cheating will not be tolerated in this course. University regulations will be pursued and enforced on any cheating student.

Contribution of Course to Meeting the Professional Component

The course aims at introducing the concepts and physiology of inter-neuronal signaling and communication as it pertains to control and communication in the nervous system.
<table>
<thead>
<tr>
<th>ABET Category Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Science</td>
</tr>
<tr>
<td>Engineering Design</td>
</tr>
</tbody>
</table>
The rewards of the merger between neural science and cognitive psychology are particularly evident in the study of learning and memory. In the study of learning and memory we are interested in several questions. What are the major forms of memory? In this chapter we review the major biological principles of learning and memory that have emerged from clinical and cognitive/psychological approaches. In the next chapter we shall examine learning and memory processes at the cellular and molecular level. Memory can be classified as implicit or explicit on the basis of how information is stored and recalled.