Rheological Measurement of Polymeric Composites before and after UV Degradation

Lenka Markovičová, Viera Zatkalíková, Milan Uhlričik, Tatiana Liptáková
Faculty of Engineering, Department of Materials Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Zilina, Slovakia, e-mail: lenka.markovicova@fstroj.uniza.sk

The aim of this paper is the comparison of selected rheological properties of polymeric composites with glass fibers materials before and after exposure in UV box. Rate and depth of degradation induced by the environment were evaluated by Frequency Sweep Test, which monitors changes in viscoelastic properties of polymers with respect to their molecular structure and their behavior in thermoplastic processes. Degradation process resulted in changes of complex dynamic viscosity, storage and loss modulus, changes in molecular weight and its distribution. UV radiation is intense degradation factors affecting the change in the structure and properties of polymers - the polymer matrix gradually degrades by UV radiation, the viscosity of the composites decreases, the COP is moved to lower angular frequencies with increasing molar mass.

Keywords: polyamide, frequency sweep test, UV degradation, microstructure, glass fibers

Acknowledgement
The research was supported partially by Scientific Grant Agency of Ministry of Education, Science and Sport of Slovak Republic and Slovak Academy of Science, grant VEGA No. 1/0123/15, No. 1/0533/15 and grant KEGA No. 049ŽU-4/2017.

References

indexed on: http://www.scopus.com

The properties of the polymer before and after weathering and UV radiation were also compared. Degradability was examined by measuring color change, FTIR spectrum analysis and determination of the ageing factor \(k \). The tensile strength, elongation at break and hardness of composites by Shore A method were measured. Understanding the degradation processes of polymer matrix under the influence of various external factors and predicting the lifetime of polymeric materials is very important for better design of processes, manufacturing and for industry. This study was supported by the National Centre for Research and Development (NCBR) project: LIDER/32/0139/L-7/15/NCBR/2016.