chapters. Throughout the book, hemoglobin disorders are employed as a model of molecular pathology.

Profusely illustrated, the volume will be invaluable for those seeking to become familiar with the basic concepts of molecular biology and its application to medicine, especially if, like me, you have had difficulty in following the scientific literature and words such as probes, gene cloning, gene libraries, introns, and restriction length polymorphism are foreign. This book provides a simple and inexpensive introduction to that complicated field. I recommend it without reservation.

ROBERTO ROMERO
Department of Obstetrics and Gynecology
Yale University School of Medicine


The growth of basic science research in oncology over the past two decades has been notable. Geneticists, pharmacologists, epidemiologists, virologists, radiation biologists, and representatives of other disciplines are all actively involved in oncologic research. Although the scope and volume of research in oncology has grown, the discipline has not developed a sense of unity based on a common core of knowledge. Researchers have not been trained primarily as oncologists but have specialized in the study of questions of oncologic interest after having received their training in other fields.

Recognizing that many young investigators lacked a broad perspective on areas of oncology outside their specialties, staff members of the Imperial Cancer Research Fund (ICRF) in London organized a series of introductory lectures designed to fill the void. This book stems from those lectures. Accordingly, the authors of the individual chapters are primarily staff members of the ICRF and its affiliated institutions.

Topics covered range from the most basic "What is cancer?" to more timely questions including the role of oncogenes, viruses, and monoclonal antibodies in the study of oncology. General topics such as metastasis, carcinogenesis, cancer therapy, and the epidemiology and genetics of cancer are also addressed.

The book is composed of nineteen chapters, each twenty to twenty-five pages long, which are not exhaustive reviews of the literature, but rather essays outlining important data and lines of thought relating to the question under consideration. Overall, the chapters provide well-written, accessible, and often stimulating discussions. Franks and Teich have organized a valuable monograph which presents a "core curriculum" of material which will aid clinicians and researchers in oncology better to appreciate developments in areas removed from their fields of specialization.

SETH A. ROSENTHAL
Medical Student
Yale University School of Medicine


Dr. Reilly, a graduate of Yale's medical school, is currently the medical director of the Eunice Kennedy Shriver Center for Mental Retardation in Waltham, Massachu-
In those books, the authors described the length and breadth of hemoglobin, the molecule that ushered in the molecular biologic revolution in clinical medicine. The two books stand as examples of fine writing by experienced physician-scientists who have made extraordinary contributions to the field. The first chapter, by Ranney, sets the stage by providing a comprehensive historical perspective. The high quality of the book continues from there. Nevertheless, this book will be invaluable to experts in the field and extremely useful to medical students and house officers who want a single resource in which to review the clinical aspects of hemoglobin disorders. This book will serve as a binder for the literature on the molecule that put medicine into an entirely new place. In book: Molecular Hematology, Third Edition, pp.1 - 18. Cite this publication. David Weatherall. Abstract. Historical background
The structure, genetic control and synthesis of normal hemoglobin
The molecular pathology of hemoglobin
Genotype–phenotype relationships in the thalassemias
Structural hemoglobin variants
Postscript
Further reading. Do you want to read the rest of this chapter? Request full-text. Advertisement. Citations (5). References (8). Haemoglobin (Hb) is a metalloprotein adapted for oxygen transport, with a heme prosthetic group bound to a pocket in each of the four globin mono